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ON OPTIMAL PROBLEMS OF THE THEORY OF ELASTICITY WITH UNKNOWN BOUNDARIES* 

L.V. PETUKHOV 

In optimal-design problems in the theory of elasiticty when the shape of 

the boundary is sought /l-3/, the domain varies and in the long run is 
subject to determination, unlike design problems when the elastic moduli 

of the material are unknown /4, 5/. The solution of such problems is 

often irregular in nature /2/. In this connection, the need arises for 

a classification of a suitable set of allowable domains that can be given 

by using two parameters. For this set of domains a variational concept 

is presented and a theorem is proved on the existence of variations of 

the displacements of an elastic structure. 

1. The class of domains under consideration. Let R” be an n-dimensional Euclidean 

space of vectors X (n = 2 or 3) in which a Cartesian coordinate system is defined by the 

directions ei such that x=ziei. Here and henceforth, the satin subscripts take the values 

1 ( . . ., n; summation from 1 to R is assumed over the repeated subscripts in the products. 

Definition 1. The set /6/ 

I. = {y E R” 1 y = y (to), to E 2’) 

T = {To= (9, . . . ,~n)lO<ra<l,O<~~~To<I} 

yk (7') E f? (T), m > 1 

is called a differentiable (n- I)-dimensional cell, when Cm is a space of m times differentiable 

functions, the vectors r, = @\ @are linearly independent for VT"E T, i.e., form a covariant 

moving basis of the coordinate system e/7/, the mapping yk(zO) is one-to-one in T. Here and 

henceforth, the Greek indices take the values 2,.. .,n,and summation from 2 to R is assumed in 

the repeated super- and subscripts in the products. 

We determine the normal direction r1 =rl(y) at each point y E r, where we select its 

direction such that 

Y = Y (.c') = det I! rlre . . . r, 1) > 0 (1.1) 
The area element of the surface J? is determined by the formula /8/ 

dr = y (t') a,?. . . CW = Y (r") at" 

We introduce curvilinear coordinates /7/ 

x (r) = y (t") + zlrl (y (TO)), r = (t’, . . ., t") (1.2) 

in the neighbourhood of r and we calculate the covariant vectors 

R,(r)=ax/cW= r,--&.t, R,(y)=r,(y) (1.3) 

where t = t (y (7”)) = - V”r, is the curvature tensor of the surface r, V” =raa/W is an (n-l)- 

dimensional Hamilton operator, and ra is the contravariant basis of the coordinate system +. 

The tensor t and the direction r1 depend only on the cells r but not on the selection of the 

coordinates -c". 

Let X (T) = det 11 R,R, . . . R, 11 be the Jacobi matrix of the coordinate transformation X(.t). 

It follows from (1.3) that 

x (.t) = Y (70) [I + I, (t) (- T’) + . . . + 1,l (t) (-- w-1l 

*Prikl.~fatem.~~ekhan.,50,2,231-236,1986 



171 

where 
called 
for Y, 

I,(t) are invariants of the curvature,tensor t /9/. The quantity Ir(t)/(n- 1) is 
the mean while 1,-r(t) is the Gaussian curvature /9/. The condition (1.1) is satisfied 
therefore, 3a>o such that 

x (21, z")> 0, Vz" ET, I T1 I < 1 (l-4) 
The volume element in the neighbourhood of r is defined by the formula /8/ 

ax = ax1 . . . dq, = X (T) do’ . . . h” = X (z) (lz 

Definition 2. We call the function r(y,q), where YE r and n is a parameter, a generat- 
ing boundary function (GBF) if a~,>(! such that for all OCV<% 

r (Y, Q), ar (Y, n)larl, @r (y,.rl)lQ" E f+ (T) (1.5) 

r (Y, 0) = 0, Ir (Y. rl) I-S h 
where y = y (P), and h. is the quantity in (1.4). 

The GBF enables us to obtain (n - l>dimensional cells 

r (q) = {y (TO, q) I y (z', TJ) = y + r (y, 3 rr (y), Y = Y (r% To E TI 

There follows from the conditions (1.5) that I'(O)= I?. 

Definition 3. We call the functions b(y) = &(y,O)l&l and 6% (y) = 3% (y, O)/hz, respect- 
ively, the first and second variations of the (n- I)-dimensional. cell I?. 

Let us obtain an expression for the variation in the direction of the normal tl. To do 
this, we find the vector of the covariant basis 

ra(tO, s)=k -r(y, q)ra.t + *rr (y) 

The direction r,(y,q) is defined by the equations 1 c1 (y, n) 1 = 1, r1 (y,~). r, (z”,q) = 0, 
from which we find 

rl(y,rl)=rl--r(y,'l)-_lIr(y,q)lerl- r(y,'I)t-V'r(y,rl)+o(~(y,fl)) (1.6) 

Definition 4. The vectors 6r, (y) = 8r, (y, 0)/&l, 6%, (y) = @rl (y, 0)/&p will respectively be 
called the first and second variations of the direction rr. 

We find from (1.6) 

6r, (y) = - V"6r (y), . Pr, (y) = - V”Pr (y) - 
1 F"6r (y) I 2r.1 - 26r (y) t. V%(y) 

Definition 5. We shall say that the domain Q CR" is referred to the class D”(k), O( 
h<l if: 

1) Dis a bounded domain with piecewise-smooth boundary r,which dissociates into a finite 
number <k-r of non-intersecting /6/ m-times differentiable (n- I)-dimensional cells; 

2) The curvilinear coordinates (1.2), for which X(z) >0, can be introduced in the 
neighbourhood II? I<h or each cell; 

3) For VyEr and any 0<6 <h the domains 8, Q yl.&U(y,8), 8 \ &u(y,6) have 

identical connectness and 

mes 8 n U (y, 6) > a mes U (y, 6) 
mes U (y, 6) \ B > a mes U (y. 6) 

U (y, 6) = (x E R” I I x - Y I < 6) 

We shall consider the direction of the normal rr(y) to be external at each regular point. 

2. Elastic Constructions. Definition 6. We shall call 8"CR" a projection domain 
if it is of the class D”(h) and its boundary consists of the three non-intersecting sets 

rue, rFO and roe (ro = F; u FFo u T;), on which the following vectors are given: the displace- 
ments 

u (y) = ui (Y) ei, u E V(P) = (u ( ui E w,r (no), Ui (y) = 0, Y E r,o) 

and the surface loads 

F(Y) = Fi (Y) e,, Fi (Y) E L, (rF”) (2.4) 

Here W,r is the space of Sobolev functions that are square summable together with the 
first generalized derivative, and L, is the square-summable space of functions /lo/. 

Definition 7. We shall call QcQ" an allowable domain if P is of the class D*(a) 
and its boundary satisfies the conditions 

ru = r n rue, rF = r 0 rFo = rFo 
We denote the set of allowable domains by 0" (a). The inclusions Om(&)cOm (a,), &>a, 

are obvious. 
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We assume the domain 52~O"(h) to be filled with an elastic homogeneous material 
characterized by the elastic constants tensor 

a = aij#+?f$e~9 aijkZ = akZij = ajikl 

We call the domain p filled with the elastic material an elastic construction. 
A load (2.1) acts on the surface rp whereupon the elastic construction performs the 

displacement 

U (X) E V (8) = {U I Uj E Wzl (Q)7 ui (Y) = Ot Y E rU) 

which can be determined from an integral identity /ll/ 

tn (u, v) is the bilinear 
We denote the norms 

n (II, v)ds - $ Fivi dr = 0, VVEV(R) 
F 

n (11, v) = 8 (u) . * a * * 8 (V) = %jkZEij (U) ekZ (V) 

.2 = ei,eiej, eij (v) = (4.f + VI,@ E ~5 (8) 

form in the strain tensors e (u), e(v)). 
of the functions introduced, respectively, by /lo/ 

(2.2) 

Let either mesr,# 0 or mesh, = 0 and 

IJ 
Fiwi dI’ = 0, vwEvo(n)cv(Q) 

F 

where V,(Q) is the set of all "rigid" displacements /ll/. In these cases the existence 
theorem for a solution of the integral identity (2.2) holds /ll/, where 

II n II:)* <c II F 11% rF (2.3) 

3. The existence of variations of the displacements. The domain 51 remains 
fixed in problems of control of the elastic characteristics of the material, and the question 
of the existence of variations of the displacements is connected directly with the "smoothness" 
of the coefficients of the equations and is trivial. If the domain changes, then it should 
be clarified when the variations of the displacements that are dependent on the variations of 
the domain will exist in that same space as the displacement itself. 

Let Q* fz Om (3h), O< 3h< 1. 

Definition 8. We call the function r(y,~$, y E r *, o< q< qo, qo>o an allowable GBF 
(AGBF) if the function r(y,q) is a GBF in each (n - l)-dimensional cell r*,where 

/ 

0, YE&*=&* ui=U* 

r(y,9)= go, YEFa*=(I‘“nr*,rl* 
go or 20, ~~r~*=r*\(T;f L_j ?;p*) 

and the domain S(q) bounded by I'(n) belongs to O"'(n). 
Let u(X,q)~ V(Q (q)) denote the solution of the integral identity (2.2). It is known 

/lo/ that if Q(q)= O”‘(A), then for VVE V@(q)) 

3v" E v (Q"), v" (x) = v (x), vx E 51 (q) (3.1) 
The function v" is called the continuation of v in the domain 52". We shall henceforth 

always consider such a continuation satisfied and we retain the notation v for v" 

Theorem 1. Let 9<3h<l, m>3, S2*EOm(3h), and let r(y,n) be a AGBF for 0 <q < 'Q,. 
Then 3~%1(x,q)/aq E V(Q (q)) for any 0 <q < qo. 

Proof. We take O<q<q,, and an An such that O< q f Aq <qo. We use the notation 

tl+=q+ Arl 

Q = D (n), r = r (q), o+ = 51 (7)+), r+ = r (q+) 
We denote the solutions of the integral identity for the domains 8 and Q+ by u (X9 +4 

and u+ (X, rl+)r respectively. 
Without loss of generality, it can be assumed that the function r(Y,n) is given in just 

one (n - l)-dimensional cell of the set r3* where, to be specific, we put r(y,n)> 0. 
Let us consider the integral identity 
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Sn(u’,v)~x--~n(u,v)dx=O, VvEV(Q+) 
P+ 

which is satisfied by virtue of (2.2), (3.1) and we represent it in the form 

jn.cu+-u,v)dz=- J Jc(u+,v)dz 
s+\Ii 

(3.2) 

We note that the function uf is differentiable m- 1 times /12/ in n+\B. The formula 

n(w,V)=V.[u(W).V]-[V.u(w)].v (3.3) 

holds for the twice differentiable function w where e = a.. e is the stress tensor. 
Using (3.3) on the right side of the integral identity (3.2) and also taking into account 

that V - (I (u') = 0, x E Q+ \ n and 

we obtain 

It follows from 

where the constant c can be selected to be independent of q. 
We take account of (1.6) and expand the function in a Taylor series 

rl’u(U+) = 0, vy+=y* +rcy*, 9+)rl (Y') 

d 
n(u+-uu,v)dz=~rl.u(u+).vdr. VVEV(8) 

this integral identity and (2.g that 

]I u+ - u IIC's < c II r1.u (u’) IL, r 

(3.4) 

(3.5) 

(3.6) 

rl (Y+).s (u+ (Y+, q+)) = rl (~).a (u+ (y, q+)) + 
r1 (y).au (u+ (y, q+))lat-Vrl8qAq - V” (6+/8q). 

*(I (u’ (Y, rl+)) Arl + 0 WI) 

Vy E r, tklaq = f3r (y*, q)laq 

(3.7) 

The left side in (3.7) equals zero because of (3.4), consequently, it follows from (3.6) 
that 

]I u+ - u ]]2)Q * 0 as Aq + 0 (3.8) 

We denote by WE V(Q) the solution of the integral identity 

t! n(w, v)dx= - [f.vdr, VVEV(Q) 
b 

(3.9) 

f=rl. aa (u) ar _ 
rq-v”gj *u(u) 

The function w is m- 1 times differentiable near J?, consequently 

rl,u(w)=--l, vyEr 
We subtract the integral identity (3.5) divided by Aq from (3.9). We then obtain the 

relationship 

s ( u+-U 
n w- 7’ vdx=- f+yy- ) Sr 

r1 .(I (uf) 

1 
.vdr, VVEV(8) 

P 

(3.10) 

from which and from (2.3) it follows that 

]] w - (u+ - u)lAq ]I?" Q c II f + rl.u (u+)lAq b,r (3.11) 

It follows from (3.81 and (3.5) that u+eu near r and point-by-point together with 
the first derivatives as AqhO Taking account of (3.7), we find from (3.11) 

I] w - (u' - u)/Aq II% < c ll 0 (W/b 11~. r (3.12) 

from which the theorem follows. 

Theorem 2. Let m> 4 and the conditions of Theorem 1 be satisfied. Then 

dBu (x, qM12 E v (Q (q)) 
The proof of this theorem is exactly the same as the preceding. The difference is that 

now a finite difference (u+ - 2u + u-)/Aq2 must be constructed, the expansion (1.6) must be 
used, and considerable smoothness of the (n- l)-dimensional cell and the AGBF r(y*,q) must 
be required. 
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Remark-lo. The quantities 6~ = au (x, O)/Q and 6~ = a+(~, o)/aqa are, respectively, called 
the first and second variations of the displacement u. It follows from Theorems 1 and 2 that 

6u, 6% E v(Q*). 

Remark 2O. If r(y*,q)<O the proof of Theorem 1 will differ somewhat from that presented. 
In particular, the differentiability of u and w should be taken into account in Q\s* and Sq 

should be replaced by Q+ in the integral identities (3.2), (3.5), (3.10), the estimates (3.6), 

(3.11), (3.12), and in the limit (3.8). 
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ON CORRECT FORMULATIONS OF LEKHNITSKII PROBLEMS* 

N.KH. ARUTYUNYAN, A.B. MOVCHAN, and S.A. NAZAROV 

The deformation of an elastic half-space with a cylindrical cavity under 

its own weight is considered. Since the solution of the problem increases 

at infinity, the question arises of its uniqueness and of the correct 
formulation of the problem itself. It is shown that two such formulations 

exist that yield unique solutions (that differ only to the accuracy of 

rigid displacements). The former corresponds to a decrease in the dis- 

placement uj in a layer abutting on the half-space boundary, and the 

latter to a decrease in the stress tensor components ojk, j,k= 1.2. The 

solutions corresponding to these formulations are distinct. They can be 

obtained by a passage to the limit as D-m from solutions of problems 

on the deformation of a semicylinder of diameter D with a coaxial 
cylindrical cavity: in the first case the side surface of the cylinder 

is considered rigidly clamped, and in the second stress-free. 
The results are generalized to the case of non-symmetric paraboloidal 

cavities and elastic inclusions. Formulations are discussed of problems 

in which the force of gravity depends on the distance to the half-space 

boundary. 

1. The boundary value problem and its particular solutions. Let g be a domain 
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